Streamline your Data Science
projects with Ploomber

Eduardo Blancas, JupyterCon 2020

Twitter: @edublancas / Website: ploom ber.io

Data Science is all about
experimentation

e Three stages for each experiment:

1. Thinking
2. Coding
3. Execution

 More experiments = higher chance of
success

Image: https:/unsplash.com/photos/JelnkKII2Po

Twitter: @edublancas / Website: ploomber.io

Poor man's solution

e Code project in a (long) single file

e Problem: Not maintainable
1. No clear boundaries among tasks
2. Leads to unwanted interactions

* We need reproducible and
maintainable projects

Image: https:/www.flickr.com/photos/44674593@N00/7308867666

Twitter: @edublancas / Website: ploomber.io

Why bother about
maintainability?

Without a lot of structure, we forget what
we've done in the past, we can’t read each
others’ work, and we can'’t test whether
what we've done is correct.’

— Patrick Ball

Image: https:/unsplash.com/photos/r6mBXuHnxBk
Lhttps:/hrdag.org/2016/06/14/the-task-is-a-quantum-of-workflow/

Twitter: @edublancas / Website: ploomber.io

Build a data pipeline

 Break down logic in small tasks

e Outputs become inputs of downstream
tasks

 New challenge: Manage structure
1. Multiple files
2. Route outputs

3. Orchestrate execution

Twitter: @edublancas / Website: ploomber.io

(&

Get users

J

(

(.

Get actions

\

4)
Clean users
\ J
4)

-

Clean actions

J

&

J

.

Train model

~

J

Current approach:
Workflow managers

 Frameworks to develop pipelines (Make,
Airflow, Luigi, etc)

 Problems:
1. Learn a new tool
2. Wrrite pipeline code

3. Adds unnecessary complexity

Image: https:/unsplash.com/photos/I090uFWoPal

Twitter: @edublancas / Website: ploomber.io

Ploomber

Adheres to a convention over configuration philosophy, to allows us
to write pipelines with a focus on usability.

Three conventions:

1. Each task is a script
2. Scripts declare dependencies via an upstream variable

3. And outputs via a product variable

Twitter: @edublancas / Website: ploomber.io

Python example

train-model.py:
import pandas as pd

+ tags=['"parameters"]

upstream = ['clean-users’,

product = {'nb':
'model ' :

'clean-actions']
'output/model.pickle'}

o+
users = pd.read parquet(

upstream|['clean-users']['data'])
actions = pd.read_parquet(

upstream['clean-actions']['data'])
code continues...

Twitter: @edublancas / Website: ploomber.io

'output/model-evaluation.ipynb',

&

Get users

J

s

&

Get actions

~

J

4 “
Clean users
N y,
e N

-

Clean actions

&

4)

-

Train model

o\

J

Cell injection

import pandas as pd

+ tags=['"parameters"]

upstream = ['clean-users', 'clean-actions']
product = {'nb': 'output/model-evaluation.ipynb',
'model': 'output/model.pickle'}

o+
users = pd.read_parquet(

upstream['clean-users']['data’'])
actions = pd.read parquet(

upstream['clean-actions']['data’'])
code continues...

Twitter: @edublancas / Website: ploomber.io

1 import pandas as pd

1 upstream = ['clean-users', 'clean-actions']

2 product = {

3 'nb': 'output/model-evaluation.ipynb',

4 'model’': 'output/model.pickle’

S5 |}

I BN BN BN S S B 2 §EE S S N B N S S .
I 1 # Injected cell
} 2 upstream = {

3 'clean-users': {
I 4 'nb': 'output/clean-users.ipynb’',
| 5 'data': 'output/clean-users.parquet'’
I6 }I

7 'clean-actions': {
j 8 'nb': 'output/clean-actions.ipynb’,

9 'data’': 'output/clean-actions.parquet'
I10 }
111)
Il I S S B B B B B B B B B B B B Ee

= W N =

users = pd.read parquet (

upstream|['clean-users']['data’])

actions = pd.read parquet(

upstream['clean-actions’']['data’'])

Tasks as notebooks

e Tasks are converted to notebooks
(. ipynb) before execution?

e No need to write code to save tables or
charts

 Generate logs for each execution

2Thanks to papermill! https:/github.com/nteract/papermill

Twitter: @edublancas / Website: ploomber.io

File

— Jupyter weicometoP

View nsert Cell

2 + a8 + v » 1

In [):

— Jupyter

Welcome to the
This Notebook Server wa:

WARNING

Don't rely on this sen

Your server is hosted that

Run some Python (

To run the code below:

1. Click on the cell to s¢
2. Press SHIFT+ENTER

A full tutorial for using the

tmatplotlib inline

import pandas as pd
import numpy as np
import matplotlib

— Jupyter Lorenz Differential Equations woses (o
File Edit View Insert Cell Kernel Help Python3 O
B+ @B v > B C Code § Cell Toolbar: None

Exploring the Lorenz System

In this Notebook we explore the Lorenz system of differential equations:

X =o(y—2x)
y=px—y=-2xz
2= ~fz+xy

This is one of the classic systems in non-linear differential equations. It exhibits a range of
complex behaviors as the parameters (0, f3, p) are varied, including what are known as chaotic
solutions. The system was originally developed as a simplified mathematical model for
atmospheric convection in 1963,

In [7): interact(Lorenz, N=fixed(10), angle=(0.,360.),
o=(0.0,50.0),B=(0.,5), p=(0.0,50.0))

angle 308.2
max_time 12
o 10
p 26
p 28

https://github.com/nteract/papermill

Build process

1. Extract upstream and product

2. Determine execution order using
extracted upstream dependencies

3. Inject code. Replace the list of
dependency names with a map of
names to products

4. Execute the pipeline (skips up-to-date
tasks)

Twitter: @edublancas / Website: ploomber.io

Get users

(N

Get actions

s

(&

Clean users

~

J

—>» Clean actions —

» Train model

Sample workflow

1. Input 3. Result

get-users.py output/

clean-users.py get-users.ipynb

get-actions.py users.parquet

clean-actions.py

train-model.py clean-users.ipynb
clean-users.parquet

2. EXECUte get-actions.ipynb

actions.parquet

Loomber build --entry-point . . .
P yp clean-actions.ipynb

clean-actions.parquet

model-evaluation. ipynb
model .pickle

Twitter: @edublancas / Website: ploomber.io

Integration with Jupyter

e Scripts open as notebooks®
e (Temporary) cell injection

e Ensures no hidden state by running
ploomber build

3Thanks to jupytext! https:/github.com/mwouts/jupytext

Twitter: @edublancas / Website: ploomber.io

@
_
jupyter
o

https://github.com/mwouts/jupytext

Demo

Twitter: @edublancas / Website: ploomber.io

Main features

e Python, R and SQL* supported-
 Parametrized pipelines with auto-generated CLI
e Testing (i.e. run data tests upon task execution)

 Debugger integration (pdb and ipdb)

* Any database with a DBAPI 2.0 client or compatible with SQLAIchemy is supported

> Languages that have Jupyter kernels are supported with a few limitations

Twitter: @edublancas / Website: ploomber.io

Resources

e Install: pip install ploomber

e For updates/questions/feedback, follow me on Twitter: @edublancas
e Code: github.com/ploomber/ploomber

e Examples: github.com/ploomber/projects

e Website: ploomber.io

e This presentation: blancas.io/talks/jupytercon-20.pdf

Twitter: @edublancas / Website: ploomber.io

twitter.com/edublancas
https://github.com/ploomber/ploomber
github.com/ploomber/projects
https://ploomber.io
https://blancas.io/files/talks/jupytercon-2020.pdf

Thanks for watching!

Twitter: @edublancas / Website: ploom ber.io

