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Motivation

Your job as a Data Scientist is to create value (e.g. optimize resources, increase
customer satisfaction, etc) from data

Since you do not know what will work in advance, a lot of work will depend on trying
out things (e.g. focus on a specific subset of customers, add features from a new
dataset), yout success is directly related to how many experiments you try

The data you use will never be in the right format so you need to code the necessary
transformations until it does, we call this a "pipeline" – this concept applies to any
data processing project, but we will focus on ML applications

Faulty ML pipelines severely delay experiments, or even worse, they will make you
reach the wrong conclusion

A robust data pipeline that reduces the opportunity for failures and prevents errors
from propagating to your model is an essential component for any Data Scientist



Examples of problems with faulty pipelines

Lack of reproducibility: your current best model achieves great performance in the
validation set but your coworker is unable to get such performance with the "same"
code

Degraded performance goes unnoticed: your model used to have 90% precision but
it is now at 70%, you have made so many changes that you do not know which one
produced the performance drop

Debugging hell: you spent an entire week hunting down the bug, it was a line of
code dropping an important feature from your 100+ total features



ML systems are software systems – but are not developed like
them (1/2)

ML systems are software systems, however, common good practices in traditional
software engineering have not found their way into ML software engineering

One of such practices is modularity: software systems are divided in smaller units
that interact with each other through an interface, this is a desirable property that
allows us to test components independently in a predictable way

Another such practice is how to incorporate improvements in the codebase: small
changes are automatically tested in a clean environment and only merged after
all tests pass and someone reviews code changes



ML systems are software systems – but are not developed like
them (2/2)

Small changes. Make code reviewing easier (imagine going through a 1,000+ lines
of code change)

Automatic tests. Any change is a risk for new bugs, the only efficient way to ensure
that the project still works as expected is to run a series of tests on every code
change

Clean environment. The final model will not run on your laptop (or the development
server), it is important to make sure the project as a whole works in a clean
environment



Software Engineering workflow example

SE1: Hey did you finish working on the payment service?

SE2: Not yet, I just have to add some input validation logic

SE1: Ok let me know when it's done

SE2: finishes writing the validating function and a few tests, pushes to the repo, all
tests pass, someone reviews code

SE1: pulls code, starts his/her developing environment, interfaces the payment
service with the email confirmation service



(broken) ML workflow example (1/2)

DS1: Hey, are you done cleaning dataset X?

DS2: Not yet, I am still fixing a few things

DS1: Ok, let me know when it's done so I can use it in the model

DS2 opens up Jupyter, keeps working on the code to clean the data, applies to
code to the raw dataset, saves the data in /data/ds1/clean/dataset.parquet , and

pushes Jupyter notebook to git

DS2: Hey, I just finished, clean data is in /data/ds1/clean/dataset.parquet  and the

notebook is in the repo

DS1: Great, thanks. loads data from /data/ds1/clean/dataset.parquet , runs a

function for feature generation and trains a model



(broken) ML workflow example (2/2)

DS1 used a dataset generated by DS2 without actually reviewing or
testing the code

Aside from obvious downsides due to lack of code review and testing, there are
other consequences specific to ML projects

Lack of reproducibility: there is no guarantee that running DS2's notebook will
generate the exact same output that DS1 used, reproducubility is paramount in ML
systems

Breaking changes: any steps that take clean dataset X as input (directly or
indirectly) might break due to the introduced changes (e.g. if they expect columns
to be named in a certain way)



If it is so bad, why does it happen?

In traditional software, progress can be objectively measured (e.g. user can log in,
user can add things to their shopping cart, etc.), but it is harder to measure it in ML
projects

Some success metrics might be defined (say, we need at least 80% precision and
70% recall)

This metric-based evaluation makes Data Scientists rush to get close to those
numbers as soon as possible

With an overemphasis in metrics, good engineering practices are completely
overlooked since they take time an effort that is not perceived to contribute to this
goal



Good engineering practices translate in faster progress

The key is to strike a good balance between modeling (creating new features,
optimizing hyperparameters, try other models) and engineering (simplifying code,
writing tests)

It is important to mention that these engineering practices are language-agnostic
(no matter if you use Python or R) nor depend in any external library, they just
depend on giving proper structure to our project



Improved ML workflow

DS1: Hey, are you done working on cleaning dataset X?

DS2: Not yet, I am still fixing a few things

DS1: Ok, let me know when it's done so I can use those in the model

DS2: modifies code for cleaning dataset X, pushes to the repo. Hey, I just finished

DS1: reviews code, tests pass, changes are merged, DS1 uses results generated
from running DS2's code



Properties of robust pipelines (1/2)

1. Pipeline are naturally composed of small tasks, make this explicit in the source code
(Modular)

Modularity allows us to test our pipelines in a granular way (test tasks as
opposed to the whole pipeline)

It makes easier to modify the pipeline (to delete and add tasks)

2. Build purely functional tasks, the only way to modify a task should be through its
inputs (Stateless)
State is one of the most common sources for software bugs

The most common source of state is using global variables (never, ever use
them) and unnecessary object-oriented programming



Properties of robust pipelines (2/2)

3. Tasks are easily accessible from a script, for example, if you are building a Python
pipeline, should be easy to import (Discoverable)
We cannot automate the end-to-end pipeline execution if tasks are not
accessible from a single script

4. Dependencies among tasks are clear from the source code (Structured)
The source code alone should be enough to understand the pipeline workflow
(run this first, then this, then this)

Using documentation for this is a bad idea – no one will keep it up-to-date

5. The pipeline should not make any assumptions about storage resources (i.e. the
filesystem) or available libraries for it to easily run in a new environment (Portable)
Put it another way: do not hardcode paths to files and add a script to install
dependencies



What could go wrong in a stateful pipeline?

class DataCleaningTask: 
    def __init__(self, parameter) 
        self.parameter = parameter 

    def remove_bad_quality_columns(self, data): 
     # 20+ of lines code here... 
     pass 

   def impute_nas(self, data): 
    # another 20+ lines of code here... 
    pass 
        
    def run(self, raw_data): 
 data = self.remove_bad_quality_columns(raw_data) 
 data = self.impute_nas(data) 
 return result 

def make_features_task(clean_data): 
    # do more processing 
    return result 

raw_data = load_raw_data() 
data_cleaning_task = DataCleaningTask(parameter=1) 
clean_data =  data_cleaning_task.run(raw_data) 
features = make_features_task(clean_data) 



Sample pipeline (1/2)

# tasks.py 

# Modular and Stateless: tasks are pure functions and there is no shared state
# This is a Python example, but your code could be anything (e.g. SQL script),
# the idea is to avoid any kind of "global" or "shared" state 

def download_A(output_path): 
    # get data from the network and save it in output path 
    pass 

def download_B(output_path): 
    # get data from the network and save it in output path 
    pass 

def merge(path_to_A, path_to_B, output_path): 
    # merge the two datasets and save it in output_path 
    pass



Sample pipeline (2/2)

# pipeline.py 

# Discoverable: tasks are easily importable
from tasks import download_A, download_B, merge 
from config import paths 

# Portable: the code makes no assumptions about the filesystem
# file locations are parameters that can easily changed
# Structured: it is clear that merge depends on A and B 
download_A(output_path=paths['A']) 
download_B(output_path=paths['B']) 

merge(paths['A'], paths['B'], output_path=paths['merge']) 



Improvement #1: Design to scale

As your project evolves, performance might become an issue (e.g. you incorporate
new datasets, add a long-running feature engineering script, running out of
memory)

While you should not worry (too much) about performance until it becomes an
issue, taking some measures will delay this and help you be prepared

The key consideration is to separate the what to achieve from the how to achieve it

This translates into prefering declarative programming over imperative
programming (e.g. SQL over imperative-style Python)

Declarative programming scales much easier (you can scale up a SQL script with no
code changes by just using a bigger server)



Improvement #2: Faster experiments

The previous workflow has a big problem: it is terribly slow

Imagine you have a pipeline with 20 tasks and your colleague modifies one line of
code in the very first task

Doing an end-to-end run will trigger executing the 20 tasks, ML code usually takes
hours (or even days) to run, not a good idea

But we should just run tasks affected by the new change

This is exactly what software build systems (such as GNU Make)

You can use GNU Make for your projects, the main caveat is that GNU Make
expects all outputs to exist locally, which is often not the case (e.g. a table in a
remote database system)



A (simple) pipeline building system (1/4)

When should you re-run a task? When its output is expected to change

Given the pipeline's stateless architecture, only two things can change any task's
output: their inputs or its code

But their inputs are a consequence of its dependencies code

This translates in running a task whenever its code or any of its dependencies code
has changed



A (simple) pipeline building system (2/4)

A data pipeline is a DAG: a directed graph with no cycles

We can sort the DAG so that every task is run after all its dependencies are done

The algorithm is called topological sorting



Source: Wikipedia



A (simple) pipeline building system (3/4)

# assume you have a "pipeline object" which is represented
# as a directed graph and has no cycles
for task in topological_sorting(pipeline): 
    if dependencies_ran(task) or task_code_changed(task): 
        run(task) 



A (simple) pipeline building system (4/4)

If all your processing happens locally GNU Make is an option (there are several
tutorials online)

There are some libraries with similar objectives but they have the same limitation as
GNU Make (assume all happens locally)

On the other hand, current workflow management tools are more data engineering
oriented and AFAIK, do not provide incremental builds (Airflow, Luigi, etc.)



Improvement #3: Testing (1/4)

In traditional software: tests usually run for a short amount of time (seconds)
against a deterministic and simple output

Example:

from testing import Mailbox 
from my_online_store import Customer, Product 

def test_shopping_receipt_is_sent(): 
    mail = Mailbox(email='customer@domain.com') 

    customer = Customer(email='customer@domain.com') 
    product = Product(uid=123) 
    customer.add_to_cart(product) 
    customer.buy() 
     
    assert mail.get_latest_message().subject == 'Your receipt from online store'



Improvement #3: Testing (2/4)

Those three facts do not hold for data pipelines:
Tasks usually take a lot to run (minutes or even hours)

The output is not simple (a dataset, a model)

Some tasks have randomness involved (training a model)

To tackle long-running tasks, you can use a pipeline building system to avoid
running unnecessary computations or run your pipeline in a data sample (say a 10%
random sample – although this will introduce even more randomness)

For complex outputs, it is often challenging to find what to test, fortunately, the
most common errors are very easy to detect (missing columns, missing values,
sudden drops in performance)



Improvement #3: Testing (3/4)

Tackling randonmess is a bit harder but keep things simple: setting the random
seed in your tests is helpful, also, you can test that some value falls within certain
small range instead of a specific value – if your results vary a lot between runs, there
is probably something wrong

Some advice on testing:
Write acceptance tests for each task, make and end-to-end run on upon
codebase changes

Use logging (Python's logging  module is great!), it will help you debug failing

tests

As your project evolves, improve testing coverage



Improvement #3: Testing (4/4)

import logging 
import pandas as pd 
from utils import load_model 

def clean_customers_data(path_to_customers_data): 
    # code for cleaning data 
    logger = logging.getLogger(__name__) 
    logger.info('Dropping %i customers due to missing customer ID', n_drop) 

def test_clean_customers_data(path_to_clean_customers_data): 
    df = pd.read_parquet(path_to_clean_customers_data) 
    assert not df.customer_id.isna().sum(), 'Customer ID cannot be null' 

def train_model(path_to_clean_customers_data): 
    # train model and store model + metrics 
    pass 

def test_train_model(path_to_model): 
    model = load_model(path_to_model) 
    # test both sides, sudden increases in performance 
    # could also be a bug! 
    assert 0.80 <= model['metrics']['accuracy'] <= 0.81



Summary

Striking a good balance between modeling and good software engineering
practices are key for a ML project to succeed

A robust data pipeline has 5 properties: Modular, Stateless, Discoverable,
Structured and Portable

The properties are language-agnostic, they only depend on giving proper structure
to our project

Design to scale: prefer declarative over imperative programming

Use a pipeline building system to accelerate end-to-end runs

Write acceptance tests upon task execution



Comments? Questions?

Twitter: @edublancas


