Rethinking Software Testing for Data
Science

Eduardo Blancas (@edublancas)

PyData Global 2020

The reproducibility test

)

| T

Automated testing

&
e

Outline

1. Introduction to software testing
2. Challenges for Data Science
3. Debugging strategy

4. Tools and resources

Standard software testing procedure

1. Programmer makes small code changes
2. Save changes (usually via git commit)
3. Tests are executed

4. Changes marked as success or failure

5. If success, continues to edit. Otherwise, fixes errors until tests
Dass

Introduction to software testing

Benefits of automated testing

e Quickly be notified when things break
 Pinpoint errors to specific code changes
e Speeds up development cycle in the long run

For testing to be effective, results have to come back quickly.

Introduction to software testing

Challenges for Data Science

1. Test cases. Hard to come up with tests for functions that
transform data.

2. Structure. Tasks are not independent.
3. Speed. Data processing takes time.

4. Changing data. New data can break your code.

Challenges for Data

Science: % ?l!l?
Testing data EI aid

transformations

What can go wrong?

user_id timestamp song_genre
1 2020-01-01 Rock

1 2020-02-10 Pop

2 2020-01-15 Jazz

3 NA Jazz

3 2020-07-28 Rock

4 2020-03-12 Unknown

Challenge: Testing data transformations

Testing data expectations

Python (pandas)

Check all users have an 1D

assert (not user_ streams
.user_id
.isna().sum())

Check no unknown genres

genres = (user_streams
.song_genre.unique())

assert 'Unknown' not in genres

Challenge: Testing data transformations

SQL

SELECT NOT EXISTS(

SELECT * FROM user_ streams
WHERE user_id IS NULL

)

SELECT NOT EXISTS(

SELECT * FROM user streams

WHERE song_genre

"UNKNOWN''

(Unit) Testing code

e Data is expected but output is
Incorrect

e Break down your data
transformations in small parts

e This way it's easier to test them and
come up with test cases

e An effective test looks for concrete
expected behavior of a single unit

Challenge: Testing data transformations

@pytest.mark.parametrize('data’,

[

1)
def

complete case
{'id': [1, 1, 17,
'song_genre':
['Rock', 'Pop', 'Jazz']},
incomplete case
{'id': [2, 2, 2],
'song_genre':
['Rock', '"Pop', 'Rock']},

test _count_song _genres(data):

df = pd.DataFrame(data)

out = count_song genres(df)

expected = ['Rock', 'Pop',
'Jazz']

assert out.columns == expected

A recipe for writing data transformations

1. Wrrite docstring def count_song_genres(df):

2. What am | expecting about the data?
And add data tests.

3. What scenarios should my code

cover? And add unit tests.

def
4. Code your function and run tests

until they all pass

Challenge: Testing data transformations

Counts song genres per user,
one column per action
(Rock, Pop or Jazz)

code to count song genres...

clean_song genres(df):

Prepares user's song genres
data for training

counts = count_song genres(df)

more transformations...

Challenges for Data
Science:

Data pipeline
structure

Data transformations
depend on each other

e Data processing comes in steps C R c h
Get > Clean
e Errors propagate to any downstream users users -
task - o - 7 . Train
| - \ p ~ model
e Testing procedure has to account for 9
thi Get > Clean
1S genres genres

Challenge: Data pipeline structure

-

J

& J

From data testing to
Integration testing

def clean_song genres():
code for cleaning
song genres...
pass

def test song genres():

data tests here...

pass

Challenge: Data pipeline structure

Get
genres

Test

Clean
genres

. J

-

Test

YRRt

J

Train
model

Challenges for Data —
Science: — /
Speed —

Integration testing with a
sample

pipeline.yaml (Ploomber)
tasks:
- source: get users.py

integration test

defined in tests.py

on_finish: tests.get users

params:

sample: true

- source: get _song_genres.py
on_finish: tests.clean_song _genres

continues for each task...

Ploomber was presented at JupyterCon
2020, talk available on Youtube.

Challenge: Speed

Get

genres

.

J

Test

-

Clean

Test

YRRt

genres

J

Train
model

Other options

e Incremental builds

e Only run outdated tasks

e Task parallel execution

 Run pipeline branches in parallel

Challenge: Speed

Get

genres
N

J

Test

Clean

genres
.

Test

VRNt

J

Train
model

Challenges for Data
Science:

Data changes

Data changes during development

e Unrealistic to cover all possible input cases
e Focus on data tests
 Trying our new things vs testing current code tradeoff

e Code reusability

Challenge: Data Changes

Preparing for deployment

A unambiguous input schema definition
e Heavily invest in unit testing

e Good error messages

e |Logging to help debugging

e Batch vs live API

Challenge: Data Changes

3. Debugging
strategy

Fixing crashes

1. Unexpected data (data test crash)
e Relax data expectations
e Orleave some some data out
2. Unexpected data (task crash)
e Add data test (go back to 1)
3. Incorrect code (task crash)
e Add unit test, see it fail, fix

Important: Fix in in the right place

Debugging strategy

Get

genres
&

® @

Test

Clean

J

genres
.

Test

VRNt

J

Train
model

Fixing silent bugs

Indicates a missing unit or a data test.
1. Work backwards to find the root cause
2. Add missing unit/data test

3. Apply the logic from "fixing crashes"

Debugging strategy

Get
genres

.

® @

Clean
genres

J

N

Test

Test

VRNt

J

Train
model

Summary

Testing makes reproducibility practical

Unit tests check concrete expected behavior
Integration tests check |/O boundaries
Speed up integration tests with sampling

Be prepared for data changes

Write tests before you code

Fix bugs in the right place

4. Tools and
resources

Tools

github.com/

e Pipeline development (+ integration testing):
e ploomber/ploomber

e Running unit tests:
e pytest-dev/pytest

e Creating virtual env when running tests:

e theacodes/nox

https://github.com/ploomber/
https://github.com/pytest-dev/pytest/
https://github.com/theacodes/nox/

Resources

Slides: blancas.io/talks/pydata-20.pdf
Questions/Feedback? Twitter: @edublancas
Blog post: ploomber.io/posts/ci4ds

Code example: github.com/ploomber/projects (nl -intermediate folder)

Images by llham Fitrotul Hayat, Jugalbandi, Template, Becris, Vadim Solomakhin, ProSymbols, Rockicon,
Yoyon Pujiyono and Vichanon Chaimsuk from the Noun Project

https://blancas.io/talks/pydata-20.pdf
twitter.com/edublancas
https://ploomber.io/posts/ci4ds/
https://github.com/ploomber/projects

Thanks for watching!

